Project Spartan Spear

I’m an advisor to a team of aerospace engineering students at San Jose State University. For their senior design project, they are designing a launch vehicle to take nanosatellites (specifically, 1U and 3U CubeSats) to orbit.  Project Spartan Spear now has a Kickstarter campaign which runs to Feb. 27.

My role as mentor/advisor is in computing and avionics. We have others who cover propulsion and structures, and manufacturing. During the first semester, the team of 7 students did preliminary design of the vehicle, including aerodynamic estimates, projected trajectory, and some early CAD and experiments dealing with components of the engine.  Frankly, a launch vehicle project is so overwhelming that the entire team is now focused on just getting the engine designed, built, and tested.  The bulk of it needs to be done by May 2015, when they graduate.  Experience with other senior design projects shows that they have a life of their own, and testing continues into the summer and fall. There website shows progress in CAD models and preliminary experiments.

This is one of three projects in the aerospace senior design class. In my biased opinion, this is the most intriguing and exciting.  (We actually had to turn students away at the beginning of the fall semester in order to balance the teams; the other two are nanosatellites.)

The difference between this and large launch vehicles like Falcon 9 or Atlas V is that on the large vehicles, CubeSats are treated as secondary payloads, subject to the rules of the primary that is funding the bulk of the launch costs.  This new concept allows CubeSats to be primary payloads, and effectively lets users/developers deploy them on their own schedule to their own selected orbits. Furthermore, this is an air-launch design, which reduces the environmental impact normally associated with launch pads; the impact is primarily as an airport user.

In effect, availability of this sort of launch vehicle allows businesses that understand space benefits and spin-offs to pursue iterative development. Rather than waiting 1 or 2 years between flight bookings, this allows a business to plan a cycle of weeks or months.  The ultimate hope is to service many customers, allowing for several launches per week.

The obvious applications of having such a launch vehicle are iterative development involving: small biologicals, materials, small electronics, etc.  Spartan Spear is a step toward getting regular access to  low Earth orbit , with the intent of jumpstarting product development cycles for these types of innovations, which ultimately will find their way into new terrestrial projects and manned space systems.